ar X iv : m at h / 04 11 37 1 v 3 [ m at h . D S ] 1 2 Se p 20 05 Methods from Multiscale Theory and Wavelets Applied to Nonlinear Dynamics

نویسنده

  • Palle E. T. Jorgensen
چکیده

We show how fundamental ideas from signal processing, multiscale theory and wavelets may be applied to nonlinear dynamics. The problems from dynamics include iterated function systems (IFS), dynamical systems based on substitution such as the discrete systems built on rational functions of one complex variable and the corresponding Julia sets, and state spaces of subshifts in symbolic dynamics. Our paper serves to motivate and survey our recent results in this general area. Hence we leave out some proofs, but instead add a number of intuitive ideas which we hope will make the subject more accessible to researchers in operator theory and systems theory. Mathematics Subject Classification (2000). 42C40, 42A16, 43A65, 42A65.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 09 48 5 v 1 [ m at h . D S ] 2 4 Se p 20 04 INVARIANT MANIFOLDS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

Annals of Probability 31(2003), 2109-2135. Invariant man-ifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invarian...

متن کامل

ar X iv : m at h / 04 07 11 4 v 3 [ m at h . D S ] 2 4 Ja n 20 05 STATISTICAL STABILITY OF SADDLE - NODE ARCS

We study the dynamics of generic unfoldings of saddle-node circle local diffeo-morphisms from the measure theoretical point of view, obtaining statistical and stochastic stability results for deterministic and random perturbations in this kind of one-parameter families.

متن کامل

ar X iv : m at h / 05 01 14 5 v 1 [ m at h . D S ] 1 0 Ja n 20 05 WAVELET CONSTRUCTIONS IN NON - LINEAR DYNAMICS

We construct certain Hilbert spaces associated with a class of non-linear dynamical systems X. These are systems which arise from a generalized self-similarity, and an iterated substitution. We show that when a weight function W on X is given, then we may construct associated Hilbert spaces H(W) of L 2-martingales which have wavelet bases.

متن کامل

ar X iv : m at h / 04 09 33 3 v 1 [ m at h . R T ] 1 9 Se p 20 04 REPRESENTATION THEORY AND RANDOM POINT PROCESSES

On a particular example we describe how to state and to solve the problem of harmonic analysis for groups with infinite–dimensional dual space. The representation theory for such groups differs in many respects from the conventional theory. We emphasize a remarkable connection with random point processes that arise in random matrix theory. The paper is an extended version of the second author’s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006